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A three-dimensional thermal lattice-Boltzmann model with two relaxation times 
to separately control viscosity and thermal diffusion is developed. Numerical 
stability of the model is significantly improved using Lax-Wendroff advection to 
provide an adjustable time step. Good agreement with a conventional finite- 
difference Navier-Stokes solver is obtained in modeling compressible Rayleigh- 
B6nard convection when boundary conditions are treated similarly. 
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1. I N T R O D U C T I O N  

The lattice gas au tomaton  (LGA) method 11"2) models fluid dynamic behavior 
by creating a fictitious molecular dynamical  world of particles moving 
on a regular lattice. These particles travel between neighboring lattice sites, 
arriving synchronously at the lattice sites at integral multiples of the 
simulation time step, where they engage in collisions that conserve particle 
number ,  momentum,  and (for thermal models 13'41) energy. The LGA 
models are Boolean systems that allow only zero or one particle at each 
site for each of the permitted particle velocities. Macroscopic quantities, 
such as mass density and fluid velocity, are obtained by spatial or temporal 
averaging to eliminate the large amoun t  of statistical noise in the LGA 
calculations. 
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The lattice Boltzmann equation (LBE) model eliminates this statistical 
noise by directly simulating the ensemble-averaged behavior of an LGA 
system. The LGA's Boolean variables are replaced by floating point 
variables f~(r) representing the expected number of particles traveling in 
the c~th direction at position r of the lattice. The collision phase of the LGA 
is replaced by an LBE collision operator that redistributes the incoming 
particle mass among the outgoing particle velocities in such a way as to 
relax toward a local equilibrium distribution determined from the local 
conserved densities. 

The earliest LBE models ~5~ were direct transcriptions of existing LGA 
models with the LBE equilibrium distribution and collision operator 
dictated by the collision rules of the LGA model. As such, these systems 
carried with them the defects of the original LGA model, such as the 
lack of Galilean invariance and velocity-dependent pressure. Later LBE 
implementations ~6"7~ depart from the constraints of preexisting LGA 
models so that the Fermi-Dirac equilibrium distribution arising from the 
Boolean nature of an LGA is replaced by a more general equilibrium 
distribution that eliminates the Galilean invariance and pressure defects as 
well. Furthermore, to simplify the analysis, the nonlinear collision process 
of the LGA can be replaced by linear relaxation to equilibrium. In this 
generalization, however, the particle nature of the LGA method, and the 
numerical stability connected with it, have been lost. Initially, LBE models 
included only mass and momentum as conserved quantities; these models 
were found to be remarkably stable. 

In some cases, the similarity between the Navier-Stokes velocity and 
temperature equations can be exploited to formulate LBE models that treat 
temperature as an additional velocity component. For example, simulations 
of Rayleigh-B6nard convection using a single-speed LBE model of the 
Boussinesq equations have been performed by Benzi and co-workers, tS~ 
More recent work, ~9'1~ using multispeed LBE models, has included energy 
conservation to allow thermal systems to be studied, but no very stable 
three-dimensional, multispeed LBE model has been found up to now. This 
article addresses the problem of how to stabilize such models and whether 
the LBE numerical approach, in general, presents any obvious advantage 
over conventional techniques in computational fluid dynamics. 

2. THE THERMAL LATTICE-BOLTZMANN MODEL 

2.1. The Equilibrium Distribution and Collision Operator 

Construction of an LBE model requires the specification of the 
structure of the lattice and the set of permitted particle velocities {c~}, the 
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collision operator g-2~p, and the local equilibrium mass distribution f~0).4 

The most general restrictions on the form of fro) required to obtain 
Navier-Stokes behavior require that its lowest 26 moments match those of 
the Maxwell-Boltzmann distribution, t'l) It so happens that the velocity set 
consisting of speed-x/~, speed-x/~, and speed-2 particles on a cubic lattice 
contains 26 elements, and the symmetries of this set match those of the 26 
Maxwell-Boltzmann moments. Moreover, all of these moments may be 
independently specified and thus this velocity set constitutes a minimal 
LBE model yielding correct Navier-Stokes hydrodynamic behavior with 
the equilibrium mass distribution ftol uniquely determined. Unfortunately, 
this model was found to be numerically unstable unless its transport coef- 
ficients were made quite large. It should be possible to achieve numerical 
stability by augmenting the velocity set and making good use of the 
additional degrees of freedom provided by a larger velocity set, but our 
attempts in this direction have been unsuccessful. Possible stabilization of 
the 26-velocity model through an adjustable time step, ti la Lax-Wendroff 
(see Section 2.3), is currently under study. 

An alternative approach to improving stability is to decrease the 
velocity set. Such a model will necessarily violate some of the velocity 
moment constraints, and thus will deviate from Navier-Stokes behavior. 
With care, these deviations can be made to be of sufficiently high order in 
the velocity u that the resulting model may still be useful for simulating 
low-Mach-number flows. The model described in the present work uses a 
three-dimensional cubic lattice with 21 particle velocities: a single popula- 
tion of stopped particles, six unit velocities connecting lattice sites to 
nearest neighbors, eight speed-x/~ velocities connecting lattice sites to 
neighbors across the body diagonal of the unit cell, and six speed-2 
velocities directed along the axes of the lattice. 

The collision operator and the equilibrium mass distribution are best 
described in terms of velocity moments of the mass distribution. The 
postcollisional mass distribution f'~, is generated from the precollisional 
distribution f ,  through the collision operator, 

f=( , t ) = f ~ ( r , t ) + y ' t ' 2  ctneq~tr t) 
# 

4 The following conventions are used in describing an LBE model: the simulation time step 
r is taken as the unit of time, the nearest neighbor spacing of the lattice becomes the unit 
of length, and the model's particles are taken to have unit mass, m = 1. A temperature scale 
is established by taking the Boltzmann factor k to be unity. Greek indices are used to iterate 
over the directions of particle motion, Latin subscripts to denote the Cartesian components 
of vectors and tensors. 

822/81/I-2-26 
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Table I. 

M c N a m a r a  et  al. 

Veloci ty  M o m e n t s  of the  Equi l ibr ium Mass Dist r ibut ion rio~ Used in 
the  21-Ve loc i ty  Mode l  ~ 

(I) E~f~ ~ p 
(2) E ~ c ~ f ~  ) pua 
(3) E~,c] f~ ~ pu2 + 2pc 
(4) Y.~ (c,~c~ -- ],']o~,,b)f~) pu,,ub -- ~pu'-5,,h 

C2{ (OI (5) ~ , ~,,f~ (uz+~e)pu,, 
(6) ~,, [ c,.,,c:#,c=,.-- ~c](c,,,,6,,,. + c~a,a,,,. + c:,.a,a,} ] fc= m 0 
(7) E, c2~(c=,,c~ - �89  ~ 3pu,,uh-puEa,a, 

C4 (0) 

(9) L [ " ~ -  .2 .2_ -, -, .2 -, (o) 5(c ~_,.~ ~,, + c~_,c~ + %>.c J ]  f= 0 

~p is the mass density, uu is the fluid velocity, and t is the internal energy per unit mass. 

where f~nCql = f ~  -.,af(~ The collision opera tor  is fully defined by specifying 
its effect on a complete set of velocity moments ;  our  model has 21 particle 
velocities and thus 21 independent  moments  are required for a complete 
specification. The five lowest velocity moment s  are just the conserved 
densities [Table  I, entries (1)-(3)] .  The conserved densities are contained 
entirely in the equilibrium distribution, and thus the action of the collision 
opera tor  on these moments  is irrelevant. Higher moments  are associated 
with viscous and thermal  t ransport  propert ies [entries (4) and (5) in 
Table I l: in particular the action of  the collision opera tor  on the non- 
equilibrium part  of  the trace-free second moments  determines the viscosity 
of the model. Similarly, relaxation of the traceful nonequil ibrium third 
moments  controls the thermal conductivity. These viscous and thermal 
t ransport  moments  are taken to be eigenvectors of  the collision operator ,  
i.e., 

Y', (c=,,c=b - c~,~,,b/3) j',=(,r = (;,s + 1) ~ ( c ~ , c ~  - -  ,..aUabl-,;~2"g 12, d=l'(neq ) 

Z 2 , ( n e q ) -  ~ C2f. f(ncq) c=c~, , f , ,  - (2,. + 1) ~ _=_=,_= 
t~ ct 

where 2.,. and 2c are eigenvalues of  t-2. The  kinematic viscosity v and the 
thermal diffusivity X are determined by 

2 ( ~  1) 2 ( ~  1) 

+5' +5 
The provision of separate eigenvalues for the relaxation of the viscous 

and thermal t ransport  moments  allows this model to simulate fluids with 
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arbitrary Prandtl number P r =  v/x. The thermal lattice BGK (LBGK) (tzl 
or single-relaxation-time (SRT) ~3~ models, in which the nonequilibrium 
distribution is relaxed uniformly to equilibrium using a single eigenvalue, 
are restricted to P r =  1. However, in the present formulation, there is 
still one simplification that will be removed in subsequent work. When 
Pr 4:1 the viscous term of the energy equation is multiplied by the 
thermal conductivity rather than the shear viscosity. This problem arises 
from the simple eigenstructure of the above collision operator, which 
leads to a relaxation time scale entering into the energy equation that is 
governed only by 2 e, and thus the only transport coefficient which may 
appear in the energy equation is the thermal conductivity. For many 
problems, viscous heating is negligible and the viscous contribution to the 
energy equation is often discarded when such problems are solved 
numerically. 

Having now specified the effect of the collision operator on 13 velocity 
moments, eight additional higher moments are required to complete the 
set. The action of the collision operator on these remaining moments does 
not influence the Navier-Stokes behavior of the model, and the collision 
operator is built so as to destroy the nonequilibrium component of these 
kinetic moments. The equilibrium components of these moments do, 
however, influence the hydrodynamic behavior of the model. 

The velocity set used in the 21-speed model introduces linear 
dependences within the trace-free portion of the third moments [see (6) in 
Table I]. These moments should all be of O(u3), so that using four degrees 
of freedom and the three linear dependences that exist between these 
moments to set these seven moments to zero results in errors of O(u 3) in 
the momentum equation. 

Similarly, a linear dependence exists between three of the fourth 
moments and the off-diagonal second moments: Z~,c~c~c~f~l= 
3 5Z~ " ~ rio) for a 4:b [see entry (7) in Table I].  These fourth moments L.~tL-~bJ~ 

should be of O(u'-), and this is guaranteed by the linear dependences, 
however, only at one particular temperature; at all other temperatures the 
above dependence introduces O(u z) errors in the energy equation. Two of 
the remaining fourth moments of entry (7) are set so that at least no lattice 
anisotropy of O(u 2) is introduced into the energy equation. The isotropic 
fourth moment [entry (8) of Table I] is set to its proper Maxwell- 
Boltzmann value truncated to O(u~). So far we have accounted for 20 
of the 21 degree's of freedom required to fully define f(o). The remaining 
degree of freedom is used to assure that the only O(u ~ component of the 
full set of fourth moments, 5~C,,,C~C~,cC~df~ ~, is that associated with 
Z ,  ~4r Entry (9) of Table I also ensures that higher order fourth t - a J  ~ �9 

moments are correct through O(u ~). 
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2.2. Boundary Conditions 

The LGA and LBE methods have typically employed boundary condi- 
tions motivated by simple physical considerations. For example, no-slip 
boundary conditions are implemented by means of backreflecting bound- 
ary sites: incoming particles at these sites are sent back in the direction 
from which they came, resulting in zero average momentum density at the 
site. Such physically motivated boundary conditions are easy to implement, 
but generate incorrect boundary layers 1~4"~5) which have been addressed by 
more elaborate boundary rules. (16"17) Thermal LBE models introduce addi- 
tional difficulty through the need to provide isothermal boundaries. This 
requirement may be satisfied by using techniques employed in standard 
finite-difference methods, namely extrapolation of fluid dynamic quantities 
from the interior of the fluid onto the boundary of the computational 
domain. The 21-velocity LBE model places lattice sites directly on the 
boundary; in addition, the presence of speed-2 particles in the model 
requires the creation of a row of fictitious lattice sites one lattice spacing 
beyond the boundary to act as sources of speed-2 particles produced at 
half-integral time steps. 

In conventional finite-difference solvers, it is only necessary to extra- 
polate the standard fluid dynamic variables associated with the conserved 
densities (mass density, fluid velocity, and temperature) to the boundary. 
The LBE method, however, also requires extrapolation of nonequilibrium 
quantities, namely the five components of the viscous stress tensor (the 
nonequilibrium part of the trace-free second moments off~) and the three 
components of the diffusive heat flux (the nonequilibrium part of the 
traceful third moments of f~). Furthermore, since the application of the 
Chapman-Enskog procedure to the lattice Boltzmann model employs a 
second-order spatial Taylor expansion of the equilibrium distribution flo) 
to obtain results accurate to second order in the Knudsen number, a quad- 
ratic extrapolation to the boundary is required for the five conserved 
densities (the five lowest moments off~) which define the equilibrium state. 
The nonequilibrium quantities are themselves of first order in the Knudsen 
number (i.e., they are proportional to gradients of the conserved densities), 
and thus linear extrapolation of these quantities is sufficient to obtain the 
required second-order accuracy in the Knudsen number. 

For isothermal, no-slip boundaries, the fluid velocity and temperature 
are specified at the wall by the boundary conditions, and the only equi- 
librium parameter to be determined by extrapolation is the mass density p. 
This is set by a quadratic fit to the values of p at the first three interior sites 
in the direction normal to the wall, p0 = 3 p l - 3 p 2 + p 3  , where the zero 
subscript indicates a wall site and positive subscripts indicate successive 
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interior sites. Extrapolation is also used to establish the equilibrium state 
of the fluid (mass density, fluid velocity, and specific internal energy) at the 
fictitious sites one lattice spacing beyond the boundary: 

P - l  = 6pl - 8p2 + 3p2 

u_l = 3Uo-- 3ul +u2 

e_~ -- 3eo-- 3e~ + e  2 

where Uo and eo are specified by the boundary conditions. These equi- 
librium parameters are used to generate equilibrium mass distributions 
f~o~ according to Table I. To this ftoj must be added a nonequilibrium 
component generated by linear extrapolation from the first two interior 
sites, 

~ o = 2 ~ 1 - ~ 2  

~-1 = 3 ~ 1 - 2 4 2  

for the heat flux q~, and similarly for the viscous stress. This extrapolation 
of nonequilibrium moments is performed using the postcollisional mass 
distribution f "  as input. Consequently, the mass distributions generated on 
the boundary and at the fictitious sites represent outgoing particles. These 
particles stream across the boundary into the interior of the computational 
domain in the course of the following advection phase. Note that while 
these boundary conditions do not yield strict mass conservation, the varia- 
tion in total mass in the simulations was found to be small ( < 1% for runs 
with Mach number less than 0.1). 

The quadratic extrapolation of the equilibrium distribution indicated 
above is required to achieve consistency with Navier-Stokes in the simula- 
tions of Rayleigh-B6nard flow described below. Linear extrapolation o f f ~  I 
results in convergence to steady-state flows with peak fluid velocities below 
the correct value, s Inadequacy of linear f~o~ extrapolation is further 
indicated by the appearance of discontinuities in the nonequilibrium 
distribution at the boundary. When quadratic extrapolation of f~o~ is 
employed, the nonequilibrium distribution remains continuous through the 
fluid. 

s Quadratic extrapolation of pressure to the walls is also required by the MacCormack finite- 
difference solver, used to produce comparison solutions, to achieve consistency (see 
Section 3 ). 
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2.3. Lax -Wendro f f  Advect ion 

In LBE models, time evolves in two steps: the collision process 
(described in Section 2.1) and the advection process. In the latter, distri- 
butions are moved to their new lattice sites as 

f~(r, t +  1) = f ~ ( r - c ~ ,  t) (I) 

While this displacement of the distributions by integer lattice distances is 
accurate, when combined with the collision process the result can lead to 
an unstable numerical scheme. To understand the origin of this numerical 
instability, consider the simple continuous advection equation, 

Ot -c~.Vf~ (2) 

One way to discretize the derivatives, called the upwind scheme, gives 

f~(r, t+~t)-f~(r,  t) f~(r, t ) - f ~ ( r - D ~ ,  t) 
~t - -c~ D~ 

where D~ is the spatial displacement for the ~ populationJ 18) The above 
may be rewritten as 

f~(r, t + 6 t ) =  (1 - C ) f ~ ( r ,  t)+ Cf~(r- D~, t) 

where C=c~Ot/D~ is the Courant (or CFL) number. When fi t= 1 and 
C = 1 the original LBE advection process (1) is recovered. 

While the above discretization is most accurate for C =  1, it is well 
known from numerical analysis that this places the scheme at the border- 
line of numerical stability. Since the accuracy of the collision process is 
only O(~t2), it is sensible to replace (1) with an advection process that 
maintains O(~t 2) accuracy yet improves total stability by reducing C. The 
accuracy of the above upwind scheme is O(~t), hence it is consistent to use 
the O(~t z) accurate Lax-Wendroff scheme 1~9) that discretizes the advection 
equation (2) as 

C 
f~(r, t+~t)= f~(r, t ) - ~ - ( f ~ ( r  + D~, t ) - f ~ ( r - D ~ ,  t)) 

C 2 
+ ~ - ( f ~ ( r  + D~, t ) + f ~ ( r - D ~ ,  t ) -  2f~(r, t)) 

Again, this reduces to (1) when 3t = C =  1. Note that a redistribution 
among neighboring sites is called for that involves distributions displaced 
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upwind, displaced downwind, and left in place. When the time step is less 
than one, the collision process is modified as 

i r f , (  , t) =f~(r,  t) + Ot ~ g2=pf~"eq'(r, t) 
# 

In the next section, the results from simulations using this Lax-Wendroff 
scheme are described. In general, one finds that its use significantly 
improves stability with little loss of accuracy. 

3. S I M U L A T I O N  RESULTS 

The 21-velocity thermal LBE model has beeen used to simulate com- 
pressible Rayleigh-B6nard convection/2~ The results are compared against 
those obtained from an explicit MacCormack finite-difference (FD) solver. 
These simulations have been done primarily in two dimensions to reduce 
the CPU time required and allow the use of larger grids having finer spatial 
resolution. However, full three-dimensional simulations were performed to 
verify the numerical stability of the model with respect to wave vectors 
lying off the x-y plane. 

The simulation models flow in a two-dimensional rectangular region 
of width L and height d bounded by rigid walls at the top and bottom and 
with periodic boundary conditions employed at the sides of the system. No- 
slip, isothermal boundary conditions are enforced at the top and bottom 
walls, which are maintained at temperatures T c and Tn, respectively, with 
Tc< TH. A gravitational force exerts a downward acceleration g on the 
fluid. An (x, z) coordinate system is adopted with x increasing to the right 
and z increasing downward. The locations of the top and bottom walls are 
taken to be z = z o and z = Zo + d, respectively, where Zo = dTc / (TH-Tc ) .  
The fluid is set up with initial temperature, density, and pressure 

To(z)= Tcz/Zo, po(z) =pc(Z/Zo)", po(z) =pc(Z/Zo) "+ 1 

where Pc and Pc are the density and pressure at the top wall and n is 
the polytropic index (i.e., p oc T"). The fluid velocity is initially zero plus 
a small perturbation which may be random or of the form u_-= 
U=osin(2nx/L) stn[n(Z-Zo)/d]. The latter form leads to faster startup of 
the convective rolls, but selects a particular horizontal wave number for 
development of the convective instability. 

The flow is characterized by six dimensionless parameters: the fluid's 
ratio of specific heats y = Cp/Cv and Prandtl number, the aspect ratio 
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A = L/d, the temperature ratio Tze/Tc, the polytropic index n, and the 
Rayleigh number 

R a =  gd4 ( T ~ - T c  g )  
Tc  v c---z c 

where v c and Xc are the values of the transport coefficients measured at 
density p c. The transport coefficients are taken to be independent of T and 
to scale inversely with p. The simulations described here fix y = 5/3 (the 
LBE gas is monatomic), Pr = 2/3, A = 1.5, Ra = 8000, and n =0.  The last 
constraint implies the relation g = k( T H -  Tc)/md, so that gravity balances 
the temperature difference and the initial data (uniform density, linear 
temperature gradient) form an unstable equilibrium solution. 

After initialization, the system settles into a state of steady convective 
flow shown in Fig. 1. The peak steady-state fluid velocities achieved in runs 
at three different temperature ratios and with a variety of grid sizes are 
shown in Table II. These velocities have been normalized by the local speed 
of sound (which varies as a function of temperature). A better estimate 
of the discrepancy between the LBE and finite-difference solvers is found 
in Table III, which gives the root mean square deviation of LBE mass 
density, temperature, and fluid velocity from the MacCormack FD results, 
for grids with d =  100 spacings. The density deviation is calculated as 
((ffLBE -- ffFD) 2) I/2/( (ffFD -- p0)2)  1/2, where the angle brackets indicate 
averaging over all interior lattice sites. The temperature and fluid velocity 
deviations are calculated similarly. Since the RMS error is roughly propor- 
tional to the peak fluid velocity, the Mach number error, introduced by the 
use of a reduced velocity set in the LBE model, dominates discretization 
errors for all but the smallest grids and lowest fluid velocities. 

The above runs were made at a relatively modest Rayleigh number; 
attempts to model higher Rayleigh number flow (holding other dimen- 
sionless parameters constant) on the same-size grids resulted in the rapid 

Table II. Peak Fluid Velocity of Convective Flows Simulated by the LBE 
Model for Different Temperature Ratios and Grid Sizes a 

Tn/T c d=24 d=50 d= 100 d=200 

1.2 Unstable(0.04109) 0.04223 (0.04231) 0.04214(0.04245) 0.04212 
1.4 0.07572 (0.07635) 0.07664 (0.07737) 0.07634 (0.07744) 0.07629 
1.5 0.09031 (0.09131) 0.09116 (0.09239) 0.09084 (0.09247) 0.09078 

The values in parentheses are those produced by the MacCormack finite-difference code. 
Fluid velocities are normalized by the local speed of sound. The run listed as unstable 
diverged due to numerical instability. 
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Fig. 1. Velocity field, vorticity contours, and density contours ~ r  flow at R a = 8 0 0 0  and 
~ / T c =  1.4 computed on a 300 x 200 grid. Vortici~ is measured in units of vc/d ~, and 
density in units of P0, the mean density. 

Table III. Normalized RMS Deviation for Density, Temperature, and 
Velocity Between LBE ( d =  100) and MacCormack Simulation Results 

for Different Temperature Ratios 

TH/Tc Density Temperature Velocity 

1.2 0.0182 0.0193 0.0084 
1.4 0.0321 0.0345 0.0147 
1.5 0.0378 0.0406 0.0172 
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Table IV, Peak Normalized Fluid Velocity as a Function of Rayleigh Number  
and Lax-Wendrof f  Time Step a 

Ra 6t = 1.00 6t = 0.99 6t = 0.95 6t = 0.90 ~t = 0.80 MacCormack 

8,000 0.0914 0.0916 0.0926 0.0935 0.0944 0.0925 
16,000 0.1497 0.1500 0.1513 0.1527 0.1540 0.1518 
32,000 Unstable 0.2272 0.2291 0.2310 0.2326 0.2295 
64,000 Unstable Uns tab le  Unstable 0.3259 0.3287 0.3247 

" Runs listed as unstable diverged due to numerical instability. The last column gives peak 
normalized fluid velocity obtained from the MacCormack solver on a 150 x 100 grid. 

onset of numerical  instability as the t ransport  coefficients were decreased. 

The Lax-Wendro f f  advect ion scheme overcomes this instability at the cost 

of introducing some numerical diffusion into the simulation. To determine 

how far the Rayleigh number  might  be increased, and at what cost in terms 

of  lost accuracy, a series of  simulations was run on 75 x 50 grids with 

T H / T  c = 1.5 at Rayleigh numbers of  8000-64,000 using Lax -Wendro f f  t ime 

steps ranging from 1 to 0.80. Table IV shows the peak normalized fluid 

velocity attained for these runs together with similar results from the 
MacCormack  solver. Table V shows the RMS deviat ion for normalized fluid 

velocity between the LBE Lax-Wendro f f  results and the M a c C o r m a c k  

comparison runs. As expected, the error  generally increases with decreasing 

time step; however, the Mach number  error  is usually larger than the 

numerical viscosity error. Fur thermore ,  the highest Rayleigh number  

simulations are numerically unstable unless Lax -Wendro f f  advection is 
used. 

Table V. R M S  Error in Normal ized Fluid Velocity Between the LBE 
Lax-Wendrof f  Runs and the 150x 100 MacCormack Simulations a 

Ra 6t = 1.00 6t = 0.99 6t = 0.95 6t = 0.90 6t = 0.80 

8,000 0.0174 0.0180 0.0227 0.0296 0.0360 
16,000 0.0327 0.0334 0.0365 0.0406 0.0428 
32,000 Unstable 0.0560 0.0587 0.0615 0.0605 
64,000 Unstable Unstable Unstable 0.0880 0.0850 

Runs listed as unstable diverged due to numerical instability. 
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4. C O N C L U S I O N S  

This paper describes a three-dimensional multispeed thermal LBE 
model that uses 21 speeds on a cubic lattice. The collision operator in the 
model contains two relaxation times to separately control viscosity and 
thermal diffusion. A good agreement (within a few percent) is found when 
comparing this model with a conventional explicit finite-difference Navier- 
Stokes solver in modeling compressible Rayleigh-B~nard convective flows 
with Mach number less than 0.1. The Lax-Wendroff advection operator 
permits the LBE model to operate over a substantially wider range of 
Rayleigh number at a small computational cost and with modest numerical 
error. 

The earlier nonthermal LBE models were found to have greater 
numerical stability than thermal LBE models. For example, in simulations 
of the Kelvin-Helmholtz instability at high Reynolds number (i.e., low 
viscosity), a nonthermal LBE model was at least as stable as conventional 
CFD calculationsJ'-~ This resulting stability is presumably a fortunate cir- 
cumstance, given that the advection was at the Courant limit. Preliminary 
work indicates that while Lax-Wendroff does increase the stability of non- 
thermal models somewhat, the resulting numerical viscosity exceeds the 
already low physical viscosity, causing an unacceptable loss of accuracy. 
The different stability properties of thermal and nonthermal models and 
the subsequent utility of advection schemes such as Lax-Wendroff for these 
models merit further study. 

Considering that the LBE model took comparable computer time to 
the explicit finite-difference MacCormack calculation, that similar stabiliza- 
tion procedures must be invoked, that the boundary conditions are treated 
analogously, and that adaptive mesh procedures are difficult to implement 
in LBE, 1221 we have not yet discovered an advantage to employing LBE 
over conventional Navier-Stokes solvers for thermal systems. 
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